000 09260cam a2200469 i 4500
001 0000035
003 BD-NoSTU
005 20220917133219.0
008 220404t20202020cc a b 001 0 eng d
010 _a 2021278705
015 _aGBC0D0868
_2bnb
016 7 _a019907756
_2Uk
020 _a9781492072669
_q(paperback)
020 _a1492072664
_q(paperback)
035 _a(OCoLC)on1191819373
040 _aCGP
_beng
_cCGP
_erda
_dOCLCO
_dYDX
_dUKMGB
_dOCLCF
_dJRZ
_dA7U
_dOUP
_dBDX
_dGK8
_dUAP
_dOCLCO
_dNWQ
_dIBI
_dOCLCQ
_dDLC
_dBD-NoSTU
042 _alccopycat
050 0 0 _aQA76.9.D343
_bA23 2020
082 0 4 _a006.3/12
_223
245 0 0 _a97 things about ethics everyone in data science should know :
_bcollective wisdom from the experts /
_c[edited by] Bill Franks.
246 3 0 _aNinety-seven things about ethics everyone in data science should know
250 _aFirst edition.
264 1 _aBeijing :
_bO'Reilly,
_c[2020]
264 4 _c©2020
300 _axix, 323 pages :
_billustrations ;
_c23 cm
336 _atext
_btxt
_2rdacontent
337 _aunmediated
_bn
_2rdamedia
338 _avolume
_bnc
_2rdacarrier
504 _aIncludes bibliographical references and index.
505 2 0 _gPart 1.
_tFoundational ethical principles.
_g1.
_tThe truth about AI bias /
_rCassie Kozyrkov --
_g2.
_tIntroducing ethicize, the fully AI-driven cloud-based ethics solution! /
_rBrian T. O'Neill --
_g3.
_t"Ethical" is not a binary concept /
_rTim Wilson --
_g4.
_tCautionary ethics tales : phrenology, eugenics, ... and data science? /
_rSherrill Hayes --
_g5.
_tLeadership for the future : how to approach ethical transparency /
_rRado Kotorov --
_g6.
_tRules and rationality /
_rChristof Wolf Brenner --
_g7. Understanding passive versus proactive ethics /
_rBill Schmarzo --
_g8.
_tBe careful with "decisions of the heart" /
_rHugh Watson --
_g9.
_tFairness in the age of algorithms --
_g10.
_tData science ethics : what is the foundational standard? /
_rMario Vela --
_g11.
_tUnderstand who your leaders serve /
_rHassen Masum --
_gPart 2.
_tData science and society.
_g12.
_tUnbiased [is not] fair : for data science, it cannot be just about the math /
_rDoug Hague --
_g13.
_tTrust, data science, and Stephen Covey /
_rJames Taylor --
_g14.
_tEthics must be a cornerstone of the data science curriculum /
_rLinda Burtch --
_g15.
_tData storytelling : the tipping point between fact and fiction /
_rBrent Dykes --
_g16.
_tInformed consent and data literacy education are crucial to ethics /
_rSherrill Hayes --
_g17.
_tFirst, do no harm /
_rEric Schmidt --
_g18.
_tWhy research should be reproducible /
_rStuart Buck --
_g19.
_tBuild multiperspective AI /
_rHassan Masum and Sébastien Paquet --
_g20.
_tEthics as a competitive advantage /
_rDave Mathias --
_g21.
_tAlgorithmic bias : are you a bystander or an upstander? /
_rJitendra Mudhol and Heidi Livingston Eisips --
_g22.
_tData science and deliberative justice : the ethics of the voice of "the other" /
_rRobert J. McGrath --
_g23.
_tSpam. Are you going to miss it? /
_rJohn Thuma --
_g24.
_tIs it wrong to be right? /
_rMarty Ellingsworth --
_g25.
_tWe're not yet ready for a trustmark for technology /
_rHannah Kitcher and Laura James --
_gPart 3.
_tThe ethics of data.
_g26.
_tHow to ask for customers' data with transparency and trust /
_rRasmus Wegener --
_g27.
_tData ethics and the lemming effect /
_rBob Gladden --
_g28.
_tPerceptions of personal data /
_rIrina Raicu --
_g29.
_tShould data have rights? /
_rJennifer Lewis Priestley -- Part III. The ethics of data. Chapter 26. How to ask for customers' data with transparency and trust -- Chapter 27. Data ethics and the lemming effect -- Chapter 28. Perceptions of personal data -- Chapter 29. Should data have rights? -- Chapter 30. Anonymizing data is really, really hard -- Chapter 31. Just because you could, should you? Ethically selecting data for analytics -- Chapter 32. Limit the viewing of customer information by use case and result sets -- Chapter 33. Rethinking the "get the data" step -- Chapter 34. How to determine what data can be used ethically -- Chapter 35. Ethics is the antidote to data breaches -- Chapter 36. Ethical issues are front and center in today's data landscape -- Chapter 37. Silos create problems, perhaps more than you think -- Chapter 38. Securing your data against breaches will help us improve health care -- Part IV. Defining appropriate targets & appropriate usage. Chapter 39. Algorithms are used differently than human decision makers -- Chapter 40. Pay off your fairness debt, the shadow twin of technical debt -- Chapter 41. AI ethics -- Chapter 42. The ethical data storyteller -- Chapter 43. Imbalance of factors affecting societal use of data science -- Chapter 44. Probability -- the law that governs analytical ethics -- Chapter 45. Don't generalize until your model does -- Chapter 46. Toward value-based machine learning -- Chapter 47. The importance of building knowledge in democratized data science realms -- Chapter 48. The ethics of communicating machine learning predictions -- Chapter 49. Avoid the wrong part of the creepiness scale -- Chapter 50. Triage and artificial intelligence -- Chapter 51. Algorithmic misclassification: the (pretty) good, the bad, and the ugly -- Chapter 52. The golden rule of data science -- Chapter 53. Causality and fairness -- awareness in machine learning -- Chapter 54. Facial recognition on the street and in shopping malls -- Part V. Ensuring proper transparency & monitoring. Chapter 55. Responsible design and use of AI: managing safety, risk, and transparency -- Chapter 56. Blatantly discriminatory algorithms -- Chapter 57. Ethics and figs: why data scientists cannot take shortcuts -- Chapter 58. What decisions are you making? -- Chapter 59. Ethics, trading, and artificial intelligence -- Chapter 60. The before, now, and after of ethical systems -- Chapter 61. Business realities will defeat your analytics -- Chapter 62. How can I know you're right? -- Chapter 63. A framework for managing ethics in data science: model risk management -- Chapter 64. The ethical dilemma of model interpretability -- Chapter 65. Use model-agnostic explanations for finding bias in black-box models -- Chapter 66. Automatically checking for ethics violations -- Chapter 67. Should chatbots be held to a higher ethical standard than humans? -- Chapter 68. "All models are wrong." What do we do about it? -- Chapter 69. Data transparency: what you don't know can hurt you -- Chapter 70. Toward algorithmic humility -- Part VI. Policy guidelines. Chapter 71. Equally distributing ethical outcomes in a digital age -- Chapter 72. Data ethics -- three key actions for the analytics leader -- Chapter 73. Ethics: the next big wave for data science careers? -- Chapter 74. Framework for designing ethics into enterprise data -- Chapter 75. Data science does not need a code of ethics -- Chapter 76. How to innovate responsibly -- Chapter 77. Implementing AI ethics governance and control -- Chapter 78. Artificial intelligence: legal liabilities amid emerging ethics -- Chapter 79. Make accountability a priority -- Chapter 80. Ethical data science: both art and science -- Chapter 81. Algorithmic impact assessments -- Chapter 82. Ethics and reflection at the core of successful data science -- Chapter 83. Using social feedback loops to navigate ethical questions -- Chapter 84. Ethical CRISP-DM: a framework for ethical data science development -- Chapter 85. Ethics rules in applied econometrics and data science -- Chapter 86. Are ethics nothing more than constraints and guidelines for proper societal behavior? -- Chapter 87. Five core virtues for data science and artificial intelligence -- Part VII. Case studies -- Chapter 88. Auto insurance: when data science and the business model intersect -- Chapter 89. To fight bias in predictive policing, justice can't be color-blind -- Chapter 90. When to say no to data -- Chapter 91. The paradox of an ethical paradox -- Chapter 92. Foundation for the inevitable laws for LAWS -- Chapter 93. A lifetime marketing analyst's perspective on consumer data privacy -- Chapter 94. 100% conversion: utopia or dystopia? -- Chapter 95. Random selection at Harvard? -- Chapter 96. To prepare or not to prepare for the storm -- Chapter 97. Ethics, AI, and the audit function in financial reporting -- Chapter 98. The gray line -- Contributors -- Index.
520 _aWritten by renowned data science experts Foster Provost and Tom Fawcett, Data Science for Business introduces the fundamental principles of data science, and walks you through the "data-analytic thinking" necessary for extracting useful knowledge and business value from the data you collect. This guide also helps you understand the many data-mining techniques in use today--
_cSource other than the Library of Congress.
650 0 _aData mining
_xSocial aspects.
650 0 _aData mining
_xEthics.
650 0 _aArtificial intelligence
_xEthics.
650 0 _aMachine learning
_xEthics.
650 7 _aData mining
_xSocial aspects
_2fast
_0(OCoLC)fst01983683
650 7 _aEthics
_2fast
_0(OCoLC)fst00915833
700 1 _aFranks, Bill,
_d1968-
_eeditor.
906 _a7
_bcbc
_ccopycat
_d2
_encip
_f20
_gy-gencatlg
942 _2ddc
_cJHPL-BK
955 _brn45 2022-04-04 z-processor 1 copy to USASH
_irl02 2022-04-07 (Telework) to PresSrvs
999 _c772
_d772